热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

NeurIPS2022|重振PointNet++雄风!PointNeXt:改进模型训练和缩放策略审视PointNet++...

点击下方卡片,关注“CVer”公众号AICV重磅干货,第一时间送达点击进入—CV微信技术交流群一句话总结本文通过对模型训练和缩放策略的系统研究重新审视

点击下方卡片,关注“CVer”公众号

AI/CV重磅干货,第一时间送达

点击进入—> CV 微信技术交流群

一句话总结

本文通过对模型训练和缩放策略的系统研究重新审视了经典的PointNet++,并提供了两个主要贡献,进而提出PointNeXt,表现SOTA!性能优于PointMLP、Point Transformer等网络,代码已开源(5天 90+ star)!

4db9a2317088e0e35fd39bee083e4a12.png

f36d76502c7ba02d6a4322cba863eae6.png

PointNeXt: Revisiting PointNet++ with Improved Training and Scaling Strategies

单位:KAUST, 微软

代码:https://github.com/guochengqian/pointnext

论文:https://arxiv.org/abs/2206.0467

PointNet++ 是用于点云理解的最有影响力的神经架构之一。尽管 PointNet++ 的准确性已被 PointMLP 和 Point Transformer 等最近的网络在很大程度上超越,但我们发现很大一部分性能提升是由于改进了训练策略,即数据增强和优化技术,以及增加了模型大小而不是架构创新。因此,PointNet++ 的全部潜力还有待探索。

在这项工作中,我们通过对模型训练和缩放策略的系统研究重新审视了经典的 PointNet++,并提供了两个主要贡献。

首先,我们提出了一组改进的训练策略,显著提高了 PointNet++ 的性能。例如,我们表明,在不改变架构的情况下,PointNet++ 在 ScanObjectNN 对象分类上的整体准确率(OA)可以从 77.9% 提高到 86.1%,甚至优于最先进的 PointMLP。

其次,我们将倒置残差瓶颈设计和可分离 MLP 引入 PointNet++,以实现高效且有效的模型缩放,并提出 PointNeXt,即下一版本的 PointNets。

PointNeXt 可以灵活扩展,在 3D 分类和分割任务上都优于最先进的方法。

d742ff97df4e47e333e82df4d45895dc.png

图一 PointNeXt网络结构。

算法细节

在这一节,我们展示了通过更先进的训练策略以及模型缩放策略提升PointNet++ 的性能。我们从两个小节分别介绍他们:

(1)训练策略现代化;

(2)网络架构现代化。

训练策略现代化

本章节中,我们简述我们的研究方法, 具体的训练策略可见后续的消融实验章节。

数据增强

数据增强是提升神经网络性能的最重要的方法之一,而PointNet++ 使用了简单的数据增强组合如随机旋转,缩放,平移,抖动(jitter)并应用于不同的数据集。最新的一些方法使用了更强的数据增强方法。例如, KPConv在训练时随机的失活(drop)部分颜色信息。在这篇工作中,我们收集了近期方法中用到的常见数据增强方法,并通过叠加实验定量地研究每个数据集上每种数据增强方法的效果。针对每一个数据集,我们提出了一组改进的数据增强方法,其可以大幅度提升了PointNet++ 的性能。

优化策略

优化技术主要包含损失函数(loss function),优化器(optimizer),学习率计划器(learning rate schedulers),和超参数(hyperparmeters)。随着机器学习理论的发展,现代化的神经网络可以被理论上更好的优化器(如AdamW)和更好的损失函数(CrossEntropy with label smoothing)训练。Cosine learning rate decay也在近年被大量使用,因为相比 step decay,它的调参更为简单而且效果不会差。在这篇工作中,我们通过叠加实验量化了每种优化策略对PointNet++的影响。同样的,针对每一个数据集,我们提出了一组改进的优化技术可以进一步提高网络性能。

模型架构现代化:小修改 → 大改进

感受野缩放

在点云网络中,使用不同的ball query radius (查询半径)会影响模型的感受野,进而影响性能。我们发现初始半径对于网络性能有很大程度上的影响,并且不同数据集上最佳查询半径不同。此外,我们发现相对坐标 使得网络优化更难,导致性能下降。因此,我们提出利用相对坐标处以查询半径以实现的归一化:

如果没有归一化,相对坐标的值会非常小(小于半径)。这就要求网络能学习到更大的权重应用于 。这使得优化变得困难,特别是考虑到权重衰减的正则化手段限制了网络权重的大小。

模型缩放

PointNet++ 用于分类和分割的模型规模均小于2M。而现在的网络参数普遍在10M以上[3,4]。有趣的是,我们发现无论是使用更多的SA模块还是使用更大的channel size都不会显著提高准确性,却反而导致thoughput显著下降。这主要是梯度消失和过度拟合导致的。在本小节中,我们提出了Inverted Residual MLP (InvResMLP)模块以实现高效实用的模型缩放。该模块建立在SA模块上,如图一的中部所示。InvResMLP和SA模块的不同点有三个:

  • 在模块的输入和输出之间添加了残差连接, 以缓解梯度消失问题

  • 引入了可分离的MLP 以减少计算量,并增强逐点的特征提取

  • 引入inverted bottleneck的设计,以提高特征提取的能力

在PointNet++基础上结合InvResMLP 和图一所示的宏观架构变化,我们提出了PointNeXt。我们将 stem MLP 的channel大小表示为 C,将 InvResMLP 模块的数量表示为 B。我们 PointNeXt 系列的配置总结如下:

  • PointNeXt-S: C = 32, B = 0

  • PointNeXt-B: C = 32, B = (1, 2, 1, 1)

  • PointNeXt-L: C = 32, B = (2, 4, 2, 2)

  • PointNeXt-XL: C = 64, B = (3, 6, 3, 3)

实验

在S3DIS语义分割上,PointNeXt-XL以mIoU/OA/mACC=74.9%/90.3%/83.0%超越了Point Transformer取得SOTA性能且在推理速度上更快。在ScanObjectNN分类上,PointNeXt-S超越目前的SOTA方法PointMLP,且推理速度快十倍。在ShapeNetPart部分分割上,加宽后的模型PointNeXt-S(C=160)达到87.2 Instance mIoU, 超越SOTA CurNet。

3c6f464a026d93935dd8f4c9f1c27620.png

bea905c819b9f0976536d3e9840af041.png

49aba0883754f10d6fac02d284f17506.png

消融实验

f85b3226a52976be45d158904218a382.png

22c2e6320bddd682bd402d086f2b51aa.png

572003ee4f16e158035030945051a250.png

上面论文和代码下载

后台回复:PointNeXt,即可下载上面的论文和代码

3D点云交流群成立
扫描下方二维码,或者添加微信:CVer222,即可添加CVer小助手微信,便可申请加入CVer-3D点云 微信交流群。另外其他垂直方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch、TensorFlow和Transformer等。
一定要备注:研究方向+地点+学校/公司+昵称(如3D点云+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群▲扫码或加微信号: CVer222,进交流群
CVer学术交流群(知识星球)来了!想要了解最新最快最好的CV/DL/ML论文速递、优质开源项目、学习教程和实战训练等资料,欢迎扫描下方二维码,加入CVer学术交流群,已汇集数千人!▲扫码进群
▲点击上方卡片,关注CVer公众号

整理不易,请点赞和在看


推荐阅读
  • 本文通过思维导图的形式,深入解析了大型网站技术架构的核心原理与实际案例。首先,探讨了大型网站架构的演化过程,从单体应用到分布式系统的转变,以及各阶段的关键技术和挑战。接着,详细分析了常见的大型网站架构模式,包括负载均衡、缓存机制、数据库设计等,并结合具体案例进行说明。这些内容不仅有助于理解大型网站的技术实现,还能为实际项目提供宝贵的参考。 ... [详细]
  • 独家解析:深度学习泛化理论的破解之道与应用前景
    本文深入探讨了深度学习泛化理论的关键问题,通过分析现有研究和实践经验,揭示了泛化性能背后的核心机制。文章详细解析了泛化能力的影响因素,并提出了改进模型泛化性能的有效策略。此外,还展望了这些理论在实际应用中的广阔前景,为未来的研究和开发提供了宝贵的参考。 ... [详细]
  • 提升 Kubernetes 集群管理效率的七大专业工具
    Kubernetes 在云原生环境中的应用日益广泛,然而集群管理的复杂性也随之增加。为了提高管理效率,本文推荐了七款专业工具,这些工具不仅能够简化日常操作,还能提升系统的稳定性和安全性。从自动化部署到监控和故障排查,这些工具覆盖了集群管理的各个方面,帮助管理员更好地应对挑战。 ... [详细]
  • 能够感知你情绪状态的智能机器人即将问世 | 科技前沿观察
    本周科技前沿报道了多项重要进展,包括美国多所高校在机器人技术和自动驾驶领域的最新研究成果,以及硅谷大型企业在智能硬件和深度学习技术上的突破性进展。特别值得一提的是,一款能够感知用户情绪状态的智能机器人即将问世,为未来的人机交互带来了全新的可能性。 ... [详细]
  • 当前物联网领域十大核心技术解析:涵盖哪些关键技术?
    经过近十年的技术革新,物联网已悄然渗透到日常生活中,对社会产生了深远影响。本文将详细解析当前物联网领域的十大核心关键技术,包括但不限于:1. 军事物联网技术,该技术通过先进的感知设备实现战场环境的实时监测与数据传输,提升作战效能和决策效率。其他关键技术还包括传感器网络、边缘计算、大数据分析等,这些技术共同推动了物联网的快速发展和广泛应用。 ... [详细]
  • 本文节选自《NLTK基础教程——用NLTK和Python库构建机器学习应用》一书的第1章第1.2节,作者Nitin Hardeniya。本文将带领读者快速了解Python的基础知识,为后续的机器学习应用打下坚实的基础。 ... [详细]
  • MATLAB实现Sobel边缘检测算法
    图像边缘是指图像中灰度值发生显著变化的区域。Sobel算子是一种常用的边缘检测方法,通过计算图像灰度值的梯度来检测边缘。本文介绍了Sobel算子的基本原理,并提供了基于MATLAB的实现代码。 ... [详细]
  • 网站访问全流程解析
    本文详细介绍了从用户在浏览器中输入一个域名(如www.yy.com)到页面完全展示的整个过程,包括DNS解析、TCP连接、请求响应等多个步骤。 ... [详细]
  • 从0到1搭建大数据平台
    从0到1搭建大数据平台 ... [详细]
  • 秒建一个后台管理系统?用这5个开源免费的Java项目就够了
    秒建一个后台管理系统?用这5个开源免费的Java项目就够了 ... [详细]
  • ccFlow新增属性:流程发起限制条件优化与扩展
    在ccFlow最新版本中,新增了流程发起限制条件的优化与扩展功能。这一改进不仅增强了系统的灵活性和安全性,还为开发者提供了更加精细的控制选项,确保流程启动时的数据准确性和合规性。通过合理配置这些限制条件,可以有效避免因不当操作导致的数据混乱和流程错误,提升整体业务流程的管理水平。 ... [详细]
  • 本文深入解析了WCF Binding模型中的绑定元素,详细介绍了信道、信道管理器、信道监听器和信道工厂的概念与作用。从对象创建的角度来看,信道管理器负责信道的生成。具体而言,客户端的信道通过信道工厂进行实例化,而服务端则通过信道监听器来接收请求。文章还探讨了这些组件之间的交互机制及其在WCF通信中的重要性。 ... [详细]
  • 本文深入探讨了Java多线程环境下的同步机制及其应用,重点介绍了`synchronized`关键字的使用方法和原理。`synchronized`关键字主要用于确保多个线程在访问共享资源时的互斥性和原子性。通过具体示例,如在一个类中使用`synchronized`修饰方法,展示了如何实现线程安全的代码块。此外,文章还讨论了`ReentrantLock`等其他同步工具的优缺点,并提供了实际应用场景中的最佳实践。 ... [详细]
  • a16z深入解析:代币设计的常见误区、优化策略及未来趋势分析
    a16z深入解析:代币设计的常见误区、优化策略及未来趋势分析 ... [详细]
  • 美团优选推荐系统架构师 L7/L8:算法与工程深度融合 ... [详细]
author-avatar
mobiledu2402851323
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有